МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ **БАШКИРСКИЙ ИНСТИТУТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ (ФИЛИАЛ)** ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО (ПЕРВЫЙ КАЗАЧИЙ УНИВЕРСИТЕТ)»

(БИТУ (филиал) ФГБОУ ВО «МГУТУ им. К.Г. Разумовского (ПКУ)»)

Кафедра «Машины и аппараты пищевых производств»

Рабочая программа дисциплины Б1.В.10 Технология машиностроения оборудования низкотемпературных установок и климатехники

Направление подготовки 16.03.01 Техническая физика

Тип образовательной программы прикладной бакалавриат

Направленность (профиль) подготовки техника и физика низких температур

Квалификация выпускника - бакалавр

Форма обучения очно-заочная

Год поступления - 2020

Рабочая программа дисциплины «**Технология машиностроения оборудования низко- температурных установок и климатехники»** разработана на основании федерального государственного образовательного стандарта высшего образования по направлению подготовки **16.03.01 Техническая физика (уровень бакалавриата)**, утвержденного приказом Министерства образования и науки Российской Федерации от 12.03.2015 г. № 204, учебного плана по основной профессиональной образовательной программе высшего образования «Техника и физика низких температур».

Рабочая программа дисциплины разработана группой в составе: к.т.н. Сьянов Д.А., Ларькина А.А., к.т.н., доцент Соловьёва Е.А., к.т.н. Максютов Р.Р.,

Руководитель основной профессиональной образовательной программы к.т.н., доцент кафедры «МАПП»

Сьянов Д.А.

Рабочая программа дисциплины обсуждена и утверждена на заседании кафедры «Машины и аппараты пищевых производств», протокол № 11 от «29» июня 2023 года

И.о. заведующего кафедрой «МАПП», к.т.н., доцент

Соловьева Е.А.

Оглавление

1. Цели и задачи дисциплины (модуля)	4
2. Место дисциплины в структуре ОПОП	4
3. Требования к результатам освоения дисциплины (модуля)	4
4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучен	
5. Содержание дисциплины (модуля)	
5.1. Содержание разделов и тем дисциплины (модуля) Ошибка! Закладка не определо	ена.
5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваеми (последующими) дисциплинами	
5.3. Разделы и темы дисциплины (модуля) и виды занятий	7
6. Перечень семинарских, практических занятий и лабораторных работ	9
6.1. План самостоятельной работы студентов	9
6.2. Методические указания по организации самостоятельной работы студентов	10
7. Примерная тематика курсовых работ (проектов)	10
8. Учебно-методическое и информационное обеспечение дисциплины (модуля)	10
9. Материально-техническое обеспечение дисциплины (модуля)	11
10. Образовательные технологии	11
11. Оценочные средства	12
12. Организация образовательного процесса для лиц с ограниченными возможностями.	12
13. Лист регистрации изменений	ня.6

1.Цель изучения дисциплины.

<u>Целью освоения дисциплины</u> является подготовка обучающихся к проектно- конструкторской и производственно-технологической деятельности по направлению подготовки 16.03.01 «Техническая физика» посредством обеспечения этапов формирования компетенций, предусмотренных $\Phi\Gamma$ OC, в части представленных ниже знаний, умений и навыков.

Задачами дисциплины являются изучение закономерностей процессов изготовления машин, с целью использования этих закономерностей дл обеспечения выпуска изделий заданного качества, в установленном производственной программой количестве и при наименьших затратах.

2.Место дисциплины в структуре образовательной программы, в модульной структуре ОП

Учебная дисциплина «Технология машиностроения оборудования низкотемпературных установок и климатехники» реализуется в вариативной части основной профессиональной образовательной программы «Техника и физика низких температур по направлению подготовки 16.03.01 Техническая физика очно-заочной формы обучения.

Изучение учебной дисциплины **«Технология машиностроения оборудования низкотемпературных установок и климатехники»** базируется на знаниях и умениях, полученных обучающимися ранее в ходе освоения программного материала ряда учебных дисциплин **«**Физика», **«**Термодинамика и тепломассобмен».

Изучение учебной дисциплины «**Технология машиностроения оборудования низкотемпературных установок и климатехники»** является базовым для последующего освоения программного материала учебных дисциплин: «Криофизика», «Газоразделительные системы и установки»

3. Требования к результатам освоения дисциплины.

Процесс освоения учебной дисциплины направлен на формирование у обучающихся следующих **профессиональных** компетенций: готовностью обосновывать принятие технических решений при разработке технологических процессов и изделий с учетом экономических и экологических требований (ПК-12)

В результате освоения учебной дисциплины обучающийся должен демонстрировать следующие результаты:

вать следующие результаты.					
Код	Содержание компе-	Результаты обучения			
компетенции	тенции	т сзультаты обучения			
ПК-12	готовностью обос-	Знать:			
	новывать принятие	- конструктивные особенности конденсаторов и ис-			
	технических реше-	парителей, используемых в холодильных установ-			
	ний при разработке	ках (ХУ) и системах кондиционирования воздуха			
	технологических	(CKB);			
	процессов и изделий	- особенности процессов тепломассообмена в аппа-			
	с учетом экономиче-	ратах;			
	ских и экологиче-				
	ских требований	Уметь:			
		рассчитывать величину необходимой теплопереда-			
		ющей поверхности аппаратов по заданной тепловой			
		нагрузке, с учетом особенностей тепломассобмена			
		в конкретных условиях работы ХУ и СКВ.			

Владеть:
методами планирования и выполнения эксперимен-
тальных исследований и создания на их основе экс-
периментальных установок;
- методами расчетно-теоретического исследования
тепловых процессов;
- навыками работы с технической документацией и
литературой, научно-техническими отчетами, спра-
вочниками и другими информационными источни-
ками;

4. Объем дисциплины (модуля) и виды учебной работы

Очно-заочная форма обучения

Вид учебной работы	Всего часов /	Семе
	зачетных	стры
		/
	единиц	26
Аудиторные занятия* (контактная работа)	36	36
В том числе:	-	-
Лекции	12	12
Практические занятия (ПЗ)	24	24
Семинары (С)		
Лабораторные работы (ЛР)	8	8
Самостоятельная работа* (всего)	72	72
В том числе:	-	-
Курсовой проект (работа)		
Расчетно-графические работы		
Реферат (при наличии)		
Другие виды самостоятельной работы	72	72
Вид промежуточной аттестации -зачет		
Общая трудоемкость часы	108	108
зачетные единицы	3	3

Дисциплина реализуется посредством проведения учебных занятий (включая проведение текущего контроля успеваемости и промежуточной аттестации обучающихся). В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в форме контактной работы обучающихся с преподавателем и самостоятельной работы обучающихся. При реализации дисциплины предусмотрена аудиторная контактная работа и внеаудиторная контактная работа посредством электронной информационно-образовательной среды. Учебный процесс в аудитории осуществляется в форме лекций и практических занятий. В лекциях раскрываются основные темы изучаемого курса, которые входят в рабочую программу. На практических занятиях более подробно изучается программный материал в плоскости отработки практических умений и навыков и усвоения тем. Внеаудиторная контактная работа включает в себя проведение текущего контроля успеваемости (тестирование) в электронной информационно-образовательной среде.

5. Содержание дисциплины (модуля)

5.1. Содержание разделов и тем дисциплины

Раздел 1. Введение. Основные этапы разработки технологических процессов изготовления деталей машин

Для преподавания этого раздела дисциплины используются:

- демонстрационная лекция с предоставлением структур и характеристик машиностроительных производств;
- самостоятельная работа студентов по изучению организации машиностроительных производств;
 - консультации преподавателя.

Перечень тем домашнего семестрового задания

- 1. Интеграция управления качеством объектов машиностроения.
- 2. Управление техническим состоянием изделия.
- 3. Управление качеством продукции.
- 4. Управление технологией производства в машиностроении.
- 5. Управление технологической подготовкой производства.
- 6. Статистический контроль в производстве.
- 7. Управление технологическими процессами машиностроения.

Содержание учебного материала, вынесенного на самостоятельную проработку

- 1. Общие вопросы технологии машиностроения и обработки изделий.
- 2. Развитие технологии машиностроения.
- 3. Основные понятия и положения.
- 3.1 Термины и определения.
- 3.2 Качество изделий.
- 3.3 Производственный процесс.
- 3.4 Технологический процесс.
- 4. Виды и типы производства.
- 5. Технологичность конструкции изделия.
- 5.1 Основы технологичности конструкции изделия.
- 5.2 Количественная оценка технологичности конструкции изделия.
- 5.3 Качественная оценка технологичности конструкции изделия.
- 5.4 Пример качественной оценки изделия на технологичность.

Раздел 2. Разработка технологических процессов механической обработки. Сборка машин. Особенности достижения требуемой точности типовых узлов. Временные и экономические связи в производственном процессе

Для преподавания этого раздела дисциплины используются:

- лекции в традиционной форме и лекции-визуализации;
- лабораторные работы по определению жесткости токарного станка и определения погрешности установки на обрабатываемый размер;
- практические занятия по этапам разработки технологических процессов обработки

деталей;

- самостоятельная работа студентов по изучению статистических методов оценки точности, подготовке к практическим и лабораторным занятиям, по выполнению домашнего семестрового задания (ДСЗ);
 - консультации преподавателя.

Перечень тем домашнего семестрового задания

- 1. Построение системы множеств связей свойств материалов и размерных связей в процессе проектирования изделий.
- 2. Обеспечение требуемой точности исполнительных поверхностей деталей машин
 - 3. Формирование свойств материала детали.

- 4. Достижение требуемой точности формы, размеров и относительного положения поверхностей деталей в процессе изготовления.
 - 5. Конструкторские и технологические размерные цели.
- 6. Разработка методов и средств оценки точности геометрических параметров деталей и изделий.

Содержание учебного материала, вынесенного на самостоятельную проработку

- 1. Анализ и определение элементарных погрешностей обработки.
- 2. Вероятно-статистические методы анализа и точности обработки.
- 3. Геометрические характеристики качества поверхностей деталей.
- 4. Технологическое обеспечение необходимых параметров качества поверхностей деталей машин.
- 5. Методы оценки физико-механического состояния поверхностей деталей машин.
 - 6. Расчет точности и таблицы точности обработки.

Для преподавания этого раздела дисциплины используются:

- демонстрационная лекция с представлением стандартов ЕСТПП, ЕСТД по разработке и оформлению технологической документации;
- практические работы по разработке маршрутных и операционных технологических процессов механической обработки;
- лабораторные работы по моделированию и оптимизации режимов обработки осевым инструментом;
- самостоятельная работа студентов по изучению проектирования технологических процессов, подготовке к лабораторным работам, по подготовке к практическим занятиям выполнение домашнего семестрового задания (ДСЗ);
 - консультации преподавателя.

Раздел 3. Организация и управление машиностроительным производством

Для преподавания этого раздела дисциплины используются:

- 1. лекции в традиционной форме;
- 2. самостоятельная работа студентов по изучению организации и управления машиностроительным производством, выполнению домашнего семестрового задания (ДСЗ);
 - 3. консультации преподавателя.

Перечень тем домашнего семестрового задания

- 1. Выбор технологического оборудования для производства деталей при:
- единичном производстве,
- серийном производстве,
- массовом производстве.
- 2. Расчет количества основного технологического оборудования.
- 3. Принцип выбора структуры цехов.
- 4. Определения состава и числа работающих.
- 5. Выбор структур транспортной системы, складской системы, системы обслуживания и технического контроля.
 - 6. Системы охраны труда в машиностроительных производствах.

Содержание учебного материала, вынесенного на самостоятельную проработку

- Применение гибких производственных систем в машиностроительном производстве.
- Применение станков с ИПУ, станков-автоматов и роботизированных комплексов при организации машиностроительных производств.

- Организация изготовления деталей на агрегатных станках и автоматических линий.
- Характеристики и основные принципы создания систем автоматизированного проектирования технологических процессов.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

No	Наименование	No	№ разделов и тем данной дисциплины, необходимых							
Π/Π	обеспечиваемых	для из	для изучения обеспечиваемых (последующих) дисциплин							
	(последующих)		(вписываются разработчиком)							
	дисциплин									
1.	Криофизика	2								
2.	Газоразделительные	2	2							
	системы и установки									

5.3. Разделы и темы дисциплины и виды занятий ОЗФО

		Наименование Виды занятии ОЗФО Виды занятий в часах							
<u>№</u>	Наименова	Наименование				l	1	1	
_/	ние раздела	темы	Лекц	Практиче	Семинар	Лаборат	CDC	Bce	
π/			ии	ские	ские	орные	CPC	го	
П				занятия	занятия	занятия	-		
1.	Раздел 1.								
	Введение.	Тема 1.1. Ос-	2	4			10		
	Основные	новные понятия							
	этапы	и определения							
	разработки	технологии ма-							
	технологиче	шиностроения.	<u> </u>				<u> </u>		
	СКИХ	Тема 1.2. Основ-	1	4			10		
	процессов изготовлени	ные этапы							
	изготовлени я деталей	разработки							
	машин	технологических							
		процессов изготов-							
		ления							
	D 2	деталей машин.					1.0		
	Раздел 2.	Тема 2.1. Разра-	2	4			10		
	Разработка	ботка технологи-							
	технологи-	ческих процессов							
	ческих	механической об-							
	процессов	работки. Сборка							
	механиче-	машин.					<u> </u>		
	ской обра-		1	4			10		
	ботки.								
	Сборка	Тема 2.2. Особен-							
	машин.	ности достижения							
	Особенно-	требуемой точно-							
	сти дости-	сти типовых уз-							
	жения тре-	лов. Временные и							
	буемой	экономические							
	точности	связи в производ-							
	типовых	ственном процес-							
	узлов.	ce.							
	Временные								
	и экономи-								
				·	L	·			

ческие свя- зи в произ- водствен- ном про- цессе						
Раздел 3. Организация и управление машиностро- ительным производ- ством	Тема 3.1. Основные понятия и определения организации и управление машиностроительным производством	2	4		10	
	Тема 3.2. Организация и управление машиностроительным производством	1	4		10	
Итого		12	24		72	108

6. Перечень практических работ для ОЗФО

Формы оценочных средств: устный опрос (УО), защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), домашнего задания (ДЗ), написание реферата (Р), эссе (Э), коллоквиум (К), рубежный контроль (РК), тестирование (Т)

План самостоятельной работы студентов ОЗФО

$N_{\underline{0}}$	Тема	Вид	Задание	Рекомендуемая	Количество
Π/		самостоятельн		литература	часов
П		ой работы			
1	Основы учебно- познавательной деятельности. Назначение, структура знаний, степень овладения знаниями.	Работа с учебной литературой. Самопроверка	P		20
2	Виды учебно познавательной деятельности. Мотивация учебной ситуации	Работа с учебной литературой. Самопроверка	P		20
3	Термодинамически е основы искусственного охлаждения. Способы получения низких температур.	Работа с учебной литературой. Самопроверка	P		20
4	Типы холодильников, их особенности. Естественное и	Работа с учебной литературой. Самопроверка	P		30

	искусственное охлаждение				
5	Виды холодильных машин и диапазон их работы	Работа с учебной литературой. Самопроверка	P		22
				ИТОГО:	72

6.2. Методические указания по организации самостоятельной работы студентов

Методические рекомендации для студентов по отдельным формам самостоятельной работы

Работа с учебной литературой

При работе с учебной литературой необходимо подобрать литературу, научиться правильно ее читать, вести записи.

Правильный подбор учебников рекомендуется преподавателем, читающим лекционный курс. Изучая материал по учебнику, следует переходить к следующему вопросу только после правильного уяснения предыдущего.

Особое внимание следует обратить на определение основных понятий курса. Студент должен подробно разбирать примеры, которые поясняют такие определения, и уметь строить аналогичные примеры самостоятельно. Нужно добиваться точного представления о том, что изучаешь. Полезно составлять опорные конспекты.

Самопроверка

После изучения определенной темы по записям в конспекте и учебнику, а также решения достаточного количества соответствующих задач на практических занятиях и самостоятельно студенту рекомендуется, используя лист опорных сигналов, воспроизвести по памяти определения, выводы формул, формулировки основных положений и доказательств.

Консультации

Если в процессе самостоятельной работы над изучением теоретического материала или при решении задач у студента возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения у него разъяснений или указаний. В своих вопросах студент должен четко выразить, в чем он испытывает затруднения, характер этого затруднения. За консультацией следует обращаться и в случае, если возникнут сомнения в правильности ответов на вопросы самопроверки.

Подготовка к промежуточной аттестации

Подготовка к промежуточной аттестации способствует закреплению, углублению и обобщению знаний, получаемых, в процессе обучения, а также применению их к решению практических задач. Готовясь к промежуточной аттестации, студент ликвидирует имеющиеся пробелы в знаниях, углубляет, систематизирует и упорядочивает свои знания.

7. Примерная тематика курсовых работ (проектов) - нет

8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

Основная литература

- 1. Шишмарев В.Ю. Автоматизация производственных процессов в машиностроении: учебник/В.Ю.Шишмарев.- Ростов н/Д.:Феникс,2017.-447с.-(Высшее образование).
- 2. Ейдеюс А.И. Подбор дросселирующих устройств для холодильных машин : учеб.пособие/ А.И.Ейдеюс, В.Л.Кошелев. Калининград:Изд-во БГАРФ,-2012. 189с.

Дополнительная литература

- 1. Аветисян Д.А. Автоматизация проектирования электротехнических систем и устройств: Учеб. пособие/Д.А. Аветисян. М.:Высш.шк., 2005.-511с.
- 2. Колесов И.М. Основы технологии машиностроения: Учеб.для машиностроит.спец.вузов.-3-е изд.,стер.-М.:Высш.шк.,2001.- 591с.

программное обеспечение

Internet – технологии: (WWW(англ. World Wide Web – Всемирная Паутина) – технология работы в сети с гипертекстами;

9. Материально-техническое обеспечение дисциплины:

Материально-техническое обеспечение дисциплины включает:

- 1. Локальная компьютерная сеть кафедры с выходом в сеть Internet.
- 2. Библиотечный фонд ФГБОУ ВО «МГУТУ им. К.Г.Разумовского»;
- 3. Мультимедийный проектор с комплектом презентаций.
- 4. Мультимедийное оборудование для чтения лекций-презентаций.

10. Образовательные технологии:

Методы обучения являются одним из важнейших компонентов учебного процесса. Без соответствующих методов деятельности невозможно реализовать цели и задачи обучения, достичь усвоения обучаемыми определенного содержания учебного материала.

Центральное место занимают методы активного обучения, стимулирующие познавательную деятельность студентов. Применяется монологический метод в форме рассказа, лекции с использованием таких приемов, как описание фактов, демонстрация явлений, напоминание, указание и др. Этот метод предполагает деятельность студентов копирующего характера: наблюдать, слушать, запоминать, выполнять действия по образцу. Алгоритмический метод позволяет формировать у обучающихся умения работать по определенным правилам и предписаниям; организовывать практические работы по инструкциям; формировать умения самостоятельно составлять новые алгоритмы деятельности. Диалогический метод - изложение учебного материала идет в форме сообщающей беседы, в которой используются в основном репродуктивные вопросы по известному обучающимся материалу; преподаватель может также создать проблемную ситуацию, поставить ряд проблемных вопросов, но в этом случае сущность новых понятий и способов действий объясняет преподаватель. Метод диалога диалоговое общение предполагает равенство позиций и выражается в активной роли обучающегося в образовательном процессе, при котором субъекты равноправны, а процессы познания происходят во взаимодействии через взаимопознание взаимопонимание.

В процессе обучения используются различные образовательные технологии: мультимедийная оргтехника, раздаточный материал, проведение письменного и устного опроса.

Практические занятия проходят с использованием многофункциональных учебных сред, которые содержат демонстрационные программы, наглядные пособия.

11. Оценочные средства (ОС):

- 11.1. Оценочные средства для входного контроля (могут быть в виде тестов с закрытыми или открытыми вопросами).
- 11.2. Оценочные средств текущего контроля формируются в соответствии с ЛНА (Локальными нормативными актами) университета в виде вопросов, рефератов. Назначение оценочных средств ТК выявить сформированность профессиональных компетенций ПК-14

БАЛЬНО-РЕЙТЕНГОВАЯ СИСТЕМА

Максимальная сумма рейтинговых баллов, которая может быть начислена студенту по учебной дисциплине, составляет 100 рейтинговых

Форма промежуточной аттестации	Количество бал	Количество баллов				
	Текущий Контроль (контрольная работа, тест, устный опрос)	Рубежный контроль	Сумма баллов			
Экзамен	30-70	20-30	60-100			
Зачет	40-80	10-20	60-100			

Рейтинг студента в семестре по дисциплине складывается из рейтинговых баллов, которыми преподаватель в течение семестра оценивает посещение учебных занятий, его текущую работу на занятиях и самостоятельную работу, результаты текущих контрольных работ, тестов, устных опросов, премиальных и штрафных баллов.

Рубежный рейтинг студента по дисциплине складывается из оценки в рейтинговых баллах ответа на экзамене (зачете).

Преподаватель, осуществляющий проведение практических занятий, доводит до сведения студентов на первом занятии информацию о формировании рейтинга студента и рубежного рейтинга. Посещение студентом одного практического занятия оценивается преподавателем в 1,0 рейтинговый балл.

Текущий аудиторный контроль по дисциплине в течение семестра: контрольная работа – до 20 рейтинговых баллов;

один ответ в устном опросе – до 2 рейтинговых баллов;

одно задание в тесте – до 1 рейтингового балла.

одно задание в итоговом тесте – до 2 рейтинговых баллов.

По окончании семестра каждому студенту выставляется его Рейтинговая оценка текущей успеваемости, которая является оценкой посещаемости занятий, активности на занятиях, качества самостоятельной работы.

Студент допускается к мероприятиям промежуточной аттестации, если его рейтинговая оценка текущей успеваемости (без учета премиальных рейтинговых баллов) не менее:

по дисциплине, завершающейся экзаменом - 30 рейтинговых баллов; по дисциплине, завершающейся зачетом - 40 рейтинговых баллов.

Студенты, не набравшие минимальных рейтинговых баллов по учебной дисциплине, проходят процедуру добора баллов.

Максимальная рейтинговая оценка текущей успеваемости студента за семестр по результатам текущей работы и текущего контроля знаний (без учета премиальных баллов) составляет:

70 рейтинговых баллов для дисциплин, заканчивающихся экзаменом;

80 рейтинговых баллов для дисциплин, заканчивающихся зачетом.

Ответ студента может быть максимально оценен:

на экзамене в 30 рейтинговых баллов;

на зачете в 20 рейтинговых баллов.

Студент, по желанию, может сдать экзамен или зачет в формате «автомат», если его рейтинг за семестр, с учетом премиальных баллов, составил не менее: если по результатам изучения дисциплины сдается экзамен

- 60 рейтинговых баллов с выставлением оценки «удовлетворительно»;
- 70 рейтинговых баллов с выставлением оценки «хорошо»;
- 90 рейтинговых баллов с выставлением оценки «отлично»;
- если по результатам изучения дисциплины сдается зачет:

- 60 рейтинговых баллов с выставлением оценки «зачтено»

Рейтинговая оценка по дисциплине и соответствующая аттестационная оценка по шкале «зачтено», «удовлетворительно», «хорошо», «отлично» при использовании формата «автомат», проставляется экзаменатором в зачетную книжку и зачетно-

экзаменационную ведомость только в день проведения экзамена или зачета согласно расписанию группы, в которой обучается студент.

Для приведения рейтинговой оценки к аттестационной (пятибалльный формат) используется следующая шкала:

Аттестационная оценка по дисциплине	Рейтинг студента по дисциплине		
	(включая премиальные баллы)		
«отлично»	90- 100 баллов		
«хорошо»	70 - 89 баллов		
«удовлетворительно»	60 - 69 баллов		
«неудовлетворительно»	менее 60 баллов		
«зачтено»	от 60 баллов и выше		
«не зачтено»	менее 60 баллов		

Рубежный рейтинг дисциплине ПО У студента на экзамене дифференцированном зачете менее 20 рейтинговых чем в баллов считается неудовлетворительным (независимо от рейтинга студента в семестре). В этом случае в зачетно-экзаменационную ведомость в графе «Аттестационная оценка» проставляется «неудовлетворительно».

Рубежный рейтинг по дисциплине у студента на зачете менее чем в 10 рейтинговых баллов считается неудовлетворительным (независимо от рейтинга студента в семестре). В этом случае в зачетно-экзаменационную ведомость в графе «Аттестационная оценка» проставляется «не зачтено».

Преподавателю предоставляется право начислять студентам премиальные баллы за активность (участие в научных конференциях, конкурсах, олимпиадах, активная работа на аудиторных занятиях, публикации статей, работа со школьниками, выполнение заданий повышенной сложности, изготовление наглядных пособий и т.д.) в количестве, не превышающем 20 рейтинговых баллов за семестр. Премиальные баллы не входят в сумму рейтинга текущей успеваемости студента, а прибавляются к ним.

11.2. Оценочные средства текущего контроля формируются в соответствии с ЛНА (Локальными нормативными актами) университета

11.3. Оценочные средства для промежуточной аттестации в форме зачета.

Код	Содержание компетенции	Результаты обучения	Этапы формирования компетенций в процессе освоения образовательной программы			
тенци и			Этап	Этап	Этап	
			базовой	расширения	профессиональ	
			подготовки	И	но-	
				углублении	практической	
				подготовки	подготовки	
ПК-	готовностью	<u>Недостаточный уровень</u>	Проблемы	Использован	Эффективность	
12	обосновывать		безопасности	ие основных	управленческих	
	принятие тех-	1.Компетенции не	жизнедеятель	методов	решений в	
	-	сформированы.	ности на	защиты от	области	
	нических ре-	2.Знания отсутствуют,	производстве	возможных	обеспечения	
	шений при	умения и навыки не	и ОС	последствий	безопасности	
	разработке	сформированы		аварий,	жизнедеятельнос	
	технологиче-			катастроф,	ти на	
		Пороговый уровень		стихийных	производстве	
	ских процес-			бедствий		
	сов и изделий	1.Сформированы базовые				

с учетом эко- номических и экологиче- ских требова- ний	структуры знаний. 2.Умения фрагментарны и носят репродуктивный характер. 3.Демонстрируется низкий уровень самостоятельности практического навыка.		
	<u>Продвинутый уровень</u>		
	1.Ознакомительный этап: изучение теоретического материала. 2.Овладение практическими навыками. 3.Применение полученных знаний согласно поставленным задачам. Высокий уровень		
	1.Ознакомительный этап: изучение теоретического материала. 2.Овладение практическими навыками. 3.Использовать математические и естественнонаучные методы при описании типовых профессиональных задач		

Материалы для проведения текущего и промежуточного контроля знаний Вопросы, выносимые на зачет:

Теоретический блок вопросов:

- 1. Основные цели и задачи изучения курса.
- 2. Общая характеристика машин и оборудования, применяемых на нефтяных и газовых промыслах.
- 3. Основная продукция, выпускаемая предприятиями нефтяного машиностроения.
- 4. Понятие производственного и технологического процесса в машиностроении.
- 5. Машины как объекты машиностроительных производств. Служебное назначение мапин
- 6. Основные характеристики качества машиностроительной продукции.
- 7. Стандарты ЕСТПП и ЕСТД технологическая подготовка производства.
- 8. Технологическая характеристика типов машиностроительных производств.
- 9. Понятие точности в технологии машиностроения. Требования к точности обработки деталей машин.
- 10. Случайные и систематические погрешности, возникающие в производстве деталей машин. Понятие фактической и требуемой точности. Способы задания допусков на размеры, форму и расположение поверхности.
- 11. Статистический метод анализа точности обработки деталей машин.
- 12. Факторы, влияющие на точность обработки. Расчет суммарной погрешности механической обработки.
- 13. Формирование свойств материала детали в процессе ее производства:
- 14. воздействие термической и химико-термической обработки;
- 15. воздействие механической обработки на свойства поверхности;
- 16. воздействие поверхностно пластической деформации и других методов упрочнения;

- 17. нанесение покрытий на детали машин.
- 18. Характеристики поверхностного слоя деталей машин: шероховатости, структуры, химического состава, остаточных напряжений, влияние различных методов механической обработки на состояние поверхностного слоя.
- 19. Содержание технологического процесса. Получения заготовок и изготовления деталей методами: литья, обработкой давлением, механической обработкой, сваркой, термической обработкой, отделочной обработкой.
- 20. Расчет (выбор) припусков на механическую обработку. Проектирование заготовок деталей машин.
- 21. Выбор последовательности изготовления деталей машин. Принципы "единства баз", "наращивания точности", "концентрации операции", "экономической точности обработки", применяемые при разработке технологических процессов.
- 22. Понятия баз в технологии машиностроения. Классификация баз, выбор баз. Образование погрешности при смене баз. Пересчет допусков при смене баз.
- 23. Понятие настройки технологической системы. Статическая, кинематическая и динамическая настройка. Расчет настроечных размеров. Поднастройка технологической системы.
- 24. Настройка технологической системы методом и пробных ходов, методом пробных деталей, настройка по эталону. Точность настройки.
- 25. Основы проектирования технологических процессов. Понятие технологичности деталей машин. Показатели технологичности. Методы повышения технологичности деталей машин.
- 26. Исходные данные, необходимые для проектирования технологического процесса. Программа выпуска, такт выпуска. Выбор типа машиностроительного производства.
- 27. Технологические характеристики типов производства.
- 28. Понятие заготовленных производств машиностроительных предприятий.
- 29. Проектирование технологических процессов получения заготовок.
- 30. Металлорежущие системы машиностроительных производств. Характеристики металлорежущего оборудования, инструментов, приспособлений.
- 31. Разработка маршрутного технологического процесса механической обработки.
- 32. Формирование операции механической обработки: установка, позиции, приходы, переходы. Построение, расчет и анализ технологических размерных цепей при помощи графов. Выбор режущего инструмента, расчет (выбор) режимов резания, выбор оснастки и оборудования для обеспечения требуемых качественных характеристик детали.
- 33. Контроль качества изготовления деталей машин: выбор измерительных инструментов, методов контроля.
- 34. Типовые технологические процессы изготовления деталей класса: валов, корпусов, фланцев, зубчатых колес, деталей с резьбовыми соединениями.
- 35. Типовые технологические процессы изготовления сварных конструкций: сварных рам, сварных колонн, резервуаров, трубопроводов, сварных деталей, сварных решетчатых конструкций (вышек).
- 36. Разработка технологических процессов изготовления деталей на станках с числовым программным управлением. Основные типы устройств ЧПУ. Системы координат станка с ЧПУ. Расчет координатных перемещений, определение опорных точек. Разработка управляющих программ: адреса кодов, подготовительные и вспомогательные функции. Обозначение формата кадра управляющей программы.
- 37. Методы взаимозаменяемости в машиностроении (5методов: полный, неполный, групповой, метод регулировки и метод прогонки). Расчет допусков, составляющих размерные цепи при методах полной и неполной взаимозаменяемости.
- 38. Основные погрешности, возникающие при сборке машин и механизмов. Контроль качества сборки изделий.

- 39. Выбор вида и организационной формы сборки машин. Разделение изделий на узлы, агрегаты, комплекты, сборочные единицы. Разработка последовательности сборки, составление технологической схемы сборки. Проектирование технологического процесса сборки изделий.
- 40. Особенности достижения требуемой точности при сварке типовых узлов машин, монтаже валов, сборке зубчатых передач, сборке поршневых групп.
- 41. Основы планирования производственного процесса. Временные связи в машиностроении. Техническое нормирование в машиностроительном производстве. Расчет штучного времени. Оценка условий труда и производительности в машиностроительном производстве.
- 42. Информационное обеспечение производственного процесса.
- 43. Снижение трудоемкости производства машин и оборудования. Автоматизация производств и создание гибких производственных систем.
- 44. Экономические связи в производственном процессе и метода/расчета себестоимости.
- 45. Расчет затрат на материалы, заработную плату, энергию, амортизационные отчисления, инструменты и приспособления. Методы их сокращения.
- 46. Пути повышения экономической эффективности и конкурентоспособности производств
- 47. Экономическое обоснование внедрения менеджмента качества и инновационных технологий
- 48. Организация управления машиностроительных производств.
- 49. Основы проектирования цехов и участков машиностроительного производства. Выбор структуры цехов и участков. Расчет количества основного технологического оборудования.
- 50. Определение состава и численности, работающих в цехах и участках машиностроительного производства.
- 51. Система охраны труда в машиностроительном производстве. Улучшение условий труда в машиностроительном производстве.
- 52. Совершенствование управления в машиностроительном производстве. Автоматизация управления производственным процессом в машиностроении.

12. Организация образовательного процесса для лиц с ограниченными возможностями.

Организация образовательного процесса для лиц с ограниченными возможностями осуществляется в соответствии с «Методическими рекомендациями по организации образовательного процесса для инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса» Министерства образования и науки РФ от 08.04.2014г. № АК-44/05вн.

В образовательном процессе используются социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Подбор и разработка учебных материалов производится с учетом индивидуальных особенностей.

Предусмотрена возможность обучения по индивидуальному графику, при составлении которого возможны различные варианты проведения занятий: в академической группе и индивидуально, на дому с использованием дистанционных образовательных технологий.

13. Лист регистрации изменений

альной сферы Руководитель ОПОП	ультуры, экономики, техники, технологии и соци-
Сьянов Д.А., доцент, к.т.н. ФИО, должность, ученая степень, звание	СР
Рабочая программа актуализирована, обсуждена и одо Машины и аппараты пищевых производств	брена на заседании обеспечивающей кафедры
Протокол от _ 25 февран _ 2021 г. № 7	
Соловьева Е.А., доцент, к.т.н, доцент ФИО, должность, ученая степень, звание	
Рабочая программа согласована на заседании выпуска: Машины и аппараты пищевых производств	ощей кафедры
Протокол от _ 25 феврана2021г. № 7	ρ
Соловьева Е.А., доцент, к.т.н, доцент ФИО, должность, ученая степень, звание Подпи	Cb
Актуализация с учетом развития науки, техники, и альной сферы Руководитель ОПОП	сультуры, экономики, техники, технологий и соци-
Сьянов Д.А., доцент, к.т.н. ФИО, должность, ученая степень, звание Подпи	СР
Рабочая программа актуализирована, обсуждена и одо Машины и аппараты пищевых производств	брена на заседании обеспечивающей кафедры
Протокол от _ 25 феврана _ 2022г. № 7	
Соловьева Е.А., доцент, к.т.н, доцент ФИО, должность, ученая степень, звание Подпи	
Рабочая программа согласована на заседании выпуска: Машины и аппараты пищевых производств	ощей кафедры
Протокол от 25 сребрам 2022 г. № 7	
Соловьева Е.А., доцент, к.т.н, доцент — Подпи	Cb
Актуализация с учетом развития науки, техники, и альной сферы Руководитель ОПОП	сультуры, экономики, техники, технологий и соци-
ФИО, должность, ученая степень, звание Подпи Рабочая программа актуализирована, обсуждена и одо	
Протокол от 202 г. №	
ФИО, должность, ученая степень, звание Подпи Рабочая программа согласована на заседании выпуска	
Протокол от 202 г. №	
ФИО, должность, ученая степень, звание Подпи	СР